
Breaking free from the GIL
Code: github.com/sueszli/nogil Yahya Jabary, TU Wien

In October 2024, Python surpassed JavaScript for the first time as the most popular language on GitHub’s Octoverse1.
This high-level, interpreted, garbage-collected and dynamically-typed language emphasizes code readability and
simplicity both in its implementation and syntax. This emphasis on simplicity also reflects itself in the language’s
community, often referred to as the “Pythonic” way of doing things.

However, the language’s simplicity comes at a cost: While memory and network-bound tasks can be efficiently managed
through colored functions2 and asyncio, Python is notoriously slow for compute-bound tasks due to the Global
Interpreter Lock (GIL)3. The GIL is a mutex in Python’s most popular implementation, CPython, that protects access
to Python objects, preventing multiple threads from executing Python bytecodes simultaneously and therefore limits
the language’s performance on multi-core systems.

Or as Rob Pike put it in 20124:

“The computing landscape today is almost unrelated to the environment in which the languages being
used, mostly C++, Java, and Python, had been created. The problems introduced by multicore processors,
networked systems, massive computation clusters, and the web programming model were being worked around
rather than addressed head-on. Moreover, the scale has changed: today’s server programs comprise tens of
millions of lines of code, are worked on by hundreds or even thousands of programmers, and are updated
literally every day. To make matters worse, build times, even on large compilation clusters, have stretched
to many minutes, even hours.”

These limitations have led to the development of various workarounds, such as the development of competing superset
languages such as the taichi5 and mojo6, optimizing Python interpreters like PyPy7 and Numba8, proposing to introduce
multiple lightweight sub-interpreters9 10, or even making the GIL entirely optional11 12 13, as proposed in PEP 70314.

The latter approach, making the GIL optional, was recently accepted in Python 3.13 and is currently in the experimental
stage. There is no guarantee of this feature being included in the final release, but it is a step in the right direction.

In the past, parallelizing Python code was primarily achieved through the multiprocessing module, which, while
effective, comes with significant drawbacks: it lacks shared memory support and consumes more resources compared to
threading.

The introduction of a GIL-free Python has raised hopes for more efficient parallelization. However, it’s critical to
recognize that Python’s inherently dynamic nature and the overhead of its interpreter limit its performance far beyond
the GIL. Even with these improvements, Python remains significantly slower - often by a factor of 1000 or more -
compared to statically-typed systems languages15.

This begs the question: why has Python become so dominant in scientific computing? The answer lies in its role as a
high-level orchestration tool. In this domain, computational bottlenecks are offloaded to libraries written in optimized
languages like C or Fortran, while Python acts as a glue language. This design is so entrenched that systems engineers
frequently use macros to embed C code directly into Python16.

Recent developments in Python’s concurrency capabilities, such as the removal of the GIL, are therefore not a revolution
in raw performance but an enhancement in convenience. They make it easier for developers to write efficient code,
especially for tasks that can benefit from parallel execution, without fundamentally altering Python’s comparative
speed limitations.

In this report, we will explore the optimization of a compute-bound task in Python across varying levels of abstraction.
We will analyze the trade-offs between performance and usability, shedding light on how Python’s evolving capabilities
can be leveraged effectively.

1https://github.blog/news-insights/octoverse/octoverse-2024/#the-most-popular-programming-languages
2https://langdev.stackexchange.com/questions/3430/colored-vs-uncolored-functions
3Wang, Z., Bu, D., Sun, A., Gou, S., Wang, Y., & Chen, L. (2022). An empirical study on bugs in python interpreters. IEEE Transactions

on Reliability, 71(2), 716-734.
4https://go.dev/talks/2012/splash.article
5https://www.taichi-lang.org/
6https://docs.modular.com/mojo/stdlib/python/python.html
7https://www.pypy.org/
8https://numba.pydata.org/
9https://peps.python.org/pep-0554/

10https://peps.python.org/pep-0683/
11https://peps.python.org/pep-0703/
12https://discuss.python.org/t/a-steering-council-notice-about-pep-703-making-the-global-interpreter-lock-optional-in-cpython/30474
13https://engineering.fb.com/2023/10/05/developer-tools/python-312-meta-new-features/
14https://peps.python.org/pep-0703/
15https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
16https://docs.python.org/3/c-api/init.html#releasing-the-gil-from-extension-code

https://github.com/sueszli/nogil
https://github.blog/news-insights/octoverse/octoverse-2024/#the-most-popular-programming-languages
https://langdev.stackexchange.com/questions/3430/colored-vs-uncolored-functions
https://go.dev/talks/2012/splash.article
https://www.taichi-lang.org/
https://docs.modular.com/mojo/stdlib/python/python.html
https://www.pypy.org/
https://numba.pydata.org/
https://peps.python.org/pep-0554/
https://peps.python.org/pep-0683/
https://peps.python.org/pep-0703/
https://discuss.python.org/t/a-steering-council-notice-about-pep-703-making-the-global-interpreter-lock-optional-in-cpython/30474
https://engineering.fb.com/2023/10/05/developer-tools/python-312-meta-new-features/
https://peps.python.org/pep-0703/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://docs.python.org/3/c-api/init.html#releasing-the-gil-from-extension-code


Algorithm: Naive Brute-Force Collision Attack
The embarrassingly parallel algorithm we have selected to demonstrate our optimizations, particularly the GIL-free
multithreaded implementation, to put in contrast with the alternatives is a brute-force password cracker, most popular
from the open-source library hashcat. The algorithm is simple: given a target hash, from a given character set and a
maximum password length, the cracker generates all possible passwords and hashes them using the same algorithm. If
the generated hash matches the target hash, the password is found and the program terminates.

To formalize, we define: character set C, maximum password length n, target hash value htarget, and hash function
H(x).

The search space S can be expressed as S =
⋃n

i=1 Ci where Ci represents all possible strings of length i from character
set C. The problem can then be formulated as finding p ∈ S such that: H(p) = htarget and the total search space size
is |S| =

∑n
i=1 |C|i.

For parallel processing, we can partition S into k subsets: S =
⋃k

j=1 Sj where each Sj can be processed independently
by different threads.

To simplify the problem, we have chosen a small character set C = {a, . . . z} and a small maximum password length
n = 8. The target hash value is set to aaa for simplicity. More sophisticated attacks would also consider the possibility
of salted hashes, which we have omitted for brevity as well as clever algorithmic optimizations like bloom filters, rainbow
tables, etc. which are beyond the scope of this report.

In initial experiments, we self-implemented 3 distinct hash functions H(x) in Python, namely md5, sha1, and sha256,
in plain Python to compare both the simplicity and security of the hash functions against our “collision attack”. It’s
worth noting that none of these hash functions are considered secure for password hashing17.

• md5: ~100 LoC, max 9847.03 hashes per second
• sha1: ~40 LoC, max 18578.26 hashes per second (approx. half as fast as the hashlib implementation)
• sha256: ~50 LoC, max 7870.21 hashes per second

To validate the correctness of our implementations, we have cross-validated the results with the hashlib library in
Python. Due to the slow performance of any implementation other than our thoroughly optimized sha1 implementation,
we have decided to use it for the remainder of our experiments - unless otherwise noted.

Methodology: Different Levels of Abstraction
To benchmark our experiments with the experimental GIL-free CPython version 13t (threaded), we implemented a
Docker container that builds Python from source and sets the correct compile flags to disable the GIL. The container
additionally serves to increase isolation and the reproducibility of our experiments.

1. Plain Python The most straightforward implementation of the brute-force attack is a simple loop that iterates
over all possible passwords and hashes them. We have implemented this in three different ways: (1) completely free of
any libraries, (2) using the itertools library to improve succinctness and (3) using the hashlib library for hashing
(in just 4 LoC).

2. Multiprocessing The multiprocessing module in Python allows for parallel processing by creating separate pro-
cesses for each task. We have implemented the brute-force attack using the map, imap, map_async, and imap_unordered
functions to compare the performance of different parallelization strategies. We omitted the starmap function as it is
just syntactic sugar for map and the Executor API as the overhead of creating a new process for each task is too high.

When using the multiprocessing library in Python, we can call multiple system processes that each come with their
own separate Python interpreter, GIL, and memory space. This is very simple, straightforward, and the intended way
to write parallel code in the latest Python version. But it comes with all the pros and cons of using processes for
parallel programming:

• Simple, has higher isolation, security and robustness.
• Context switching: actually doesn’t matter, since the threading library threads are kernel-level as well.
• Resource overhead: memory allocation, creation, and management are slower for processes. Additionally, having

a unique copy of the interpreter for each process is really wasteful.
• Serialization overhead: there is no shared memory, so data has to be serialized and deserialized for inter-process

communication. Also, some objects are unserializable: the pickle module is used to serialize objects. But some
objects are not pickleable (i.e. lambdas, file handles, etc.).

17https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html


3. Multithreading The threading module in Python allows for parallel processing by creating separate threads
for each task. With the GIL-free Python, this level of abstraction is expected to experience the most significant
performance improvements. We have implemented the brute-force attack using the ThreadPoolExecutor and Thread
classes to compare the performance of different parallelization strategies. While the ThreadPoolExecutor is more
convenient, the Thread class allows for more fine-grained control over the threads and resembles the join API of C
more closely.

When using the threading library in Python with the GIL released using the GIL=0 flag, we achieve the lowest overhead
and the highest performance of any pure Python implementation for parallel processing.

4. CTypes CTypes is a foreign function interface (FFI) for Python that allows calling functions from shared libraries.

We initially implemented our own optimized Sha1 implementation in C, but noticed that it performs almost identically
to the openssl/sha.h implementation. We have therefore decided to use the more robust implementation instead
to reduce complexity in our experiments. We conducted two experiments: one in plain C and one using OpenMP to
parallelize the hashing function.

This method is the most straightforward way to call C code from Python and requires close to no knowledge of the
Python C API18. The GIL is released automatically on each foreign function call. However, it comes with massive
serialization overhead as automatic type conversions done by the FFI-library are very expensive. This can be partially
circumvented by passing pointers or using CFFI but it will still be significantly slower than extending CPython. Ideally
one should share as little data, pass as little data and call the foreign function as little as possible.

We did so by only passing the target hash htarget to the C function and returning the password if it matches.

Ctypes aren’t meant to be used for high performance libraries that you use frequently but codebase-glue. you can
still use them for that purpose and gain a significant amount of performance, but you have to move as much of the
computation as possible into the C implementation.

5. CPython Finally, we have implemented the brute-force attack by extending the CPython interpreter directly.
Given our lessons from previous experiments, we have decided to use the openssl/sha.h implementation for hashing
and leave out the OpenMP parallelization.

Extending CPython has neglible to no overhead and allows to share large chunks of memory by calling mmap()
directly. However, it comes with a very complex API and requires you to manually manage the GIL with
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS macros and marshal all data passed between the C and
Python code. It also isn’t portable and requires a lot of boilerplate code to build and distribute.

Results
We beat hashlib by 13.525ns (2.5x) or 101,703,681 instructions (3.3x). This was achieved through the ctypes library,
CPython-C-API and various C libraries.

gil type command instructions (med)
task_clock

(med)
user_time

(med)
sys_time

(med)

true cpython invoke_hashcat.py (openmp) 44442376 8.760 0.0090265 0.0000000
true ctypes invoke_hashcat.py (openmp) 80107280 39.820 0.0160960 0.0000000
true ctypes invoke_hashcat.py 118592997 16.110 0.0162195 0.0000000
true plain lib.py (hashlib libary) 146146058 22.285 0.0222055 0.0000000
false multithreading workers.py 198008716 39.985 0.0258195 0.0113530
true multithreading workers.py 1030919157 106.765 0.1006565 0.0111120
true plain itertools.py 3945750392 325.575 0.3242800 0.0000000
true plain improved.py 3959326962 322.015 0.3206755 0.0000000
true plain plain.py 4752510454 400.205 0.3996415 0.0000000
true multiprocessing imap.py 6620723294 1743.685 1.2987810 0.4785180
true multiprocessing imap_unordered.py 6692752894 1787.350 1.3024570 0.5340625
true multithreading executor.py 241741072306 20136.600 19.8526395 0.6276710
false multithreading executor.py 241749347062 63354.890 63.2586825 0.0327220
true multiprocessing map_async.py 244913585430 61218.555 61.0370955 0.2066270
true multiprocessing map.py 245013383854 61259.295 61.0844710 0.2048880

More importantly, disabling the GIL while individually managing threads with the multithreading API reduced
time spent on syscalls by 42x. This shows that the GIL is a significant bottleneck for parallel computing in Python.
Nonetheless, the single threaded implementation invoking the hashlib library, our ctypes implementation or the
CPython extension are most likely the best choice for most performance critical applications.

18https://github.com/python/cpython/blob/main/Include/Python.h

https://github.com/python/cpython/blob/main/Include/Python.h


All experiments were conducted on an 11th Gen Intel Core i7-1165G7 processor running at 2.80 GHz with 16 GB of
RAM.

These insights provide a valuable foundation for future work in optimizing Python performance and offer practical
guidance for developers seeking to enhance the efficiency of their applications.

standard library

100,000,000

1,000,000,000

10,000,000,000

100,000,000,000

m
ul

tip
ro

ce
ss

in
g 

−
 m

ap
.p

y

m
ul

tip
ro

ce
ss

in
g 

−
 m

ap
_a

sy
nc

.p
y

(G
IL

 d
is

ab
le

d)
 m

ul
tit

hr
ea

di
ng

 −
 e

xe
cu

to
r.p

y

m
ul

tit
hr

ea
di

ng
 −

 e
xe

cu
to

r.p
y

m
ul

tip
ro

ce
ss

in
g 

−
 im

ap
_u

no
rd

er
ed

.p
y

m
ul

tip
ro

ce
ss

in
g 

−
 im

ap
.p

y

pl
ai

n 
−

 p
la

in
.p

y

pl
ai

n 
−

 im
pr

ov
ed

.p
y

pl
ai

n 
−

 it
er

to
ol

s.
py

m
ul

tit
hr

ea
di

ng
 −

 w
or

ke
rs

.p
y

(G
IL

 d
is

ab
le

d)
 m

ul
tit

hr
ea

di
ng

 −
 w

or
ke

rs
.p

y

pl
ai

n 
−

 li
b.

py

ct
yp

es
 −

 in
vo

ke
_h

as
hc

at
.p

y 
lib

ha
sh

ca
t.s

o

ct
yp

es
 −

 in
vo

ke
_h

as
hc

at
.p

y 
lib

ha
sh

ca
t_

op
en

m
p.

so

cp
yt

ho
n 

−
 in

vo
ke

_h
as

hc
at

.p
y 

lib
ha

sh
ca

t_
op

en
m

p.
so

GIL, Optimization Type, Command

In
st

ru
ct

io
ns

 M
ed

ia
n

Median Instructions per Command

standard library

10

100

1,000

10,000

(G
IL

 d
is

ab
le

d)
 m

ul
tit

hr
ea

di
ng

 −
 e

xe
cu

to
r.p

y

m
ul

tip
ro

ce
ss

in
g 

−
 m

ap
.p

y

m
ul

tip
ro

ce
ss

in
g 

−
 m

ap
_a

sy
nc

.p
y

m
ul

tit
hr

ea
di

ng
 −

 e
xe

cu
to

r.p
y

m
ul

tip
ro

ce
ss

in
g 

−
 im

ap
_u

no
rd

er
ed

.p
y

m
ul

tip
ro

ce
ss

in
g 

−
 im

ap
.p

y

pl
ai

n 
−

 p
la

in
.p

y

pl
ai

n 
−

 it
er

to
ol

s.
py

pl
ai

n 
−

 im
pr

ov
ed

.p
y

m
ul

tit
hr

ea
di

ng
 −

 w
or

ke
rs

.p
y

(G
IL

 d
is

ab
le

d)
 m

ul
tit

hr
ea

di
ng

 −
 w

or
ke

rs
.p

y

ct
yp

es
 −

 in
vo

ke
_h

as
hc

at
.p

y 
lib

ha
sh

ca
t_

op
en

m
p.

so

pl
ai

n 
−

 li
b.

py

ct
yp

es
 −

 in
vo

ke
_h

as
hc

at
.p

y 
lib

ha
sh

ca
t.s

o

cp
yt

ho
n 

−
 in

vo
ke

_h
as

hc
at

.p
y 

lib
ha

sh
ca

t_
op

en
m

p.
so

GIL, Optimization Type, Command

Ta
sk

 C
lo

ck
 M

ed
ia

n

Median task clock per command



|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

User: 0.560
System: 0.007

User: 0.095
System: 0.005

User: 0.557
System: 0.006

User: 0.546
System: 0.166

User: 0.555
System: 0.163

User: 1.010
System: 0.111

User: 0.985
System: 0.108

User: 0.360
System: 0.009

User: 0.439
System: 0.011

User: 0.118
System: 0.008

User: 0.193
System: 0.020

User: 0.088
System: 0.005

User: 0.099
System: 0.008

User: 0.095
System: 0.005

ctypes: invoke_hashcat.py

plain: lib.py

cpython: invoke_hashcat.py

ctypes: invoke_hashcat.py (openmp)

multithreading: GIL=1 workers.py

multithreading: GIL=0 workers.py

multithreading: GIL=0 executor.py

multiprocessing: imap_unordered.py

multiprocessing: imap.py

multithreading: GIL=1 executor.py

multiprocessing: map.py

multiprocessing: map_async.py

plain: plain.py

plain: itertools.py

0.2 0.4 0.6 0.8
Median Execution Time (s)

C
om

m
an

d
Median Execution time per Command


	Algorithm: Naive Brute-Force Collision Attack
	Methodology: Different Levels of Abstraction
	Results

