
Breaking free from the GIL
Group 07: Efficient Programs, Prof. Anton Ertl



Code: github.com/sueszli/nogil

Report: sueszli.github.io/nogil/docs/report.pdf



Why Python?

- most popular since oct 24

- simple and “pythonic”

- garbage-collected

- dynamically-typed

- scripting

- data modeling

- scientific computing



- `asyncio` is great for I/O-bound tasks

- GIL is bad for compute-bound tasks

- GIL = global interpreter lock

- mutex for bytecode

Shortcomings



“The computing landscape today is almost unrelated 

to the environment in which the languages being 

used, mostly C++, Java, and Python, had been 

created.

The problems introduced by multicore processors, 

networked systems, massive computation clusters, 

and the web programming model were being worked 

around rather than addressed head-on.”

- Rob Pike 2012

- `asyncio` is great for I/O-bound tasks

- GIL is bad for compute-bound tasks

- GIL = global interpreter lock

- mutex for bytecode

Shortcomings



Workarounds

- super-languages (mojo, taichi)

- JIT interpreters (pypy, numba)

- lightweight sub-interpreters (PEP 554)

- optional GIL (PEP 703)

- previously only through C-interop
- now also in vanilla python!

- devs are scared of breaking backwards 
compatibility



Experiments



find value x that was passed to hash(x).

- naive brute force, breadth first search.

- embarrassingly parallel.

implemented from scratch:

- sha256: 7870.21it/s

- md5: 9847.03it/s

- sha1: 18578.26it/s (insecure, but fast enough for eval)

Algorithm: collision attack



1. plain python

2. multiprocessing

3. multithreading

4. ctypes

5. cpython

Optimization Strategies



1. plain python
- vanilla python + `hashlib` (baseline)
- optimize with loop unrolling, method inlining

2. multiprocessing
3. multithreading

- also disabling the GIL
4. ctypes
5. cpython

- extending the cPython interpreter (`Python.h`)

Optimization Strategies



Plain Python



Plain Python: Loop unrolling, method inlining



Plain Python: Loop unrolling, method inlining



1. plain python
- vanilla python + `hashlib` (baseline)
- optimize with loop unrolling, method inlining

2. multiprocessing
3. multithreading

- also disabling the GIL
4. ctypes
5. cpython

- extending the cPython interpreter (`Python.h`)

Optimization Strategies



1. plain python
- vanilla python + `hashlib` (baseline)
- optimize with loop unrolling, method inlining

2. multiprocessing
3. multithreading

- also disabling the GIL
4. ctypes
5. cpython

- extending the cPython interpreter (`Python.h`)

Optimization Strategies

- compile v3.13
- use `PYTHON_GIL=0` flag
- try a bunch of functions



Multithreading: Barrier pattern

very similar to C equivalent



1. plain python
- vanilla python + `hashlib` (baseline)
- optimize with loop unrolling, method inlining

2. multiprocessing
3. multithreading

- also disabling the GIL
4. ctypes
5. cpython

- extending the cPython interpreter (`Python.h`)

Optimization Strategies



1. plain python
- vanilla python + `hashlib` (baseline)
- optimize with loop unrolling, method inlining

2. multiprocessing
3. multithreading

- also disabling the GIL
4. ctypes
5. cpython

- extending the cPython interpreter (`Python.h`)

Optimization Strategies



Trade Offs



1. plain python

2. multiprocessing

3. multithreading

4. ctypes

5. cpython

Optimization Strategies



- Simple, has higher isolation, security and robustness.

- Context switching: actually doesn’t matter, since the 
threading library threads are kernel-level as well.

- Resource overhead: memory allocation, creation and management 
are slower for processes.

- Serialization overhead: there is no shared memory, so data has 
to be serialized and deserialized for inter-process 
communication. Also, some objects are unserializable / not 
pickleable (i.e. lambdas, file handles, …).

Multiprocessing



- Simple, has higher isolation, security and robustness.

- Context switching: actually doesn’t matter, since the 
threading library threads are kernel-level as well.

- Resource overhead: memory allocation, creation and management 
are slower for processes.

- Serialization overhead: there is no shared memory, so data has 
to be serialized and deserialized for inter-process 
communication. Also, some objects are unserializable / not 
pickleable (i.e. lambdas, file handles, …).

Multiprocessing vs. Multithreading



Ctypes

- a lot simpler than cpython extensions

- foreign function interface (FFI) for Python that allows 

calling functions from shared libraries

- extremely high serialization overhead (but passing pointers is 

possible)

- not meant for HPC but codebase glue



- bare metal, zero overhead

- `mmap()` allows sharing huge chunks of memory

- very complex API, requires you to manually manage the GIL with 

`Py_BEGIN_ALLOW_THREADS` and `Py_END_ALLOW_THREADS` macros and 

marshal all data passed.

- not portable, requires a compile step.

CPython Extensions



Final Results



- `perf` unix tool

- `hyperfine` rust library

Evaluation











Thanks!


