Exercise 1.2

https://s3.us-west-2.amazonaws.com/secure.notion-static.com/4530e975-dc73-4062-870e-099d8dd32fe1/TU_Wien-Einfhrung_in_die_Knstliche_Intelligenz_VU_%28Eiter_Tompits%29_-_SS19_-_UE1.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAT73L2G45O3KS52Y5%2F20210618%2Fus-west-2%2Fs3%2Faws4_request&X-Amz-Date=20210618T130720Z&X-Amz-Expires=86400&X-Amz-Signature=8a1d5ba732fdf578751b67117d075822a4d3563ae8d3f37fefceacc6299004ca&X-Amz-SignedHeaders=host&response-content-disposition=filename%20%3D%22TU_Wien-Einf%25C3%25BChrung_in_die_K%25C3%25BCnstliche_Intelligenz_VU_%28Eiter%252C_Tompits%29_-_SS19_-_UE1.pdf%22
https://s3.us-west-2.amazonaws.com/secure.notion-static.com/6a3060c4-b36d-4355-bad0-bb7adf99ff81/TU_Wien-Einfhrung_in_die_Knstliche_Intelligenz_VU_%28Eiter_Tompits%29_-_SS19_-_UE1_%28Ausarbeitung%29.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAT73L2G45O3KS52Y5%2F20210618%2Fus-west-2%2Fs3%2Faws4_request&X-Amz-Date=20210618T130723Z&X-Amz-Expires=86400&X-Amz-Signature=e07c19ed33c2f5a147115ef59b41d13d5c8fd0d41990ea96e0fa851f4a2e6f90&X-Amz-SignedHeaders=host&response-content-disposition=filename%20%3D%22TU_Wien-Einf%25C3%25BChrung_in_die_K%25C3%25BCnstliche_Intelligenz_VU_%28Eiter%252C_Tompits%29_-_SS19_-_UE1_%28Ausarbeitung%29.pdf%22

Let f(n)=cg(n)+dh(n)f(n) = c \cdot g(n) + d \cdot h(n) be the evaluation function of A*.

Choose all the functions g,hg,h and constants c,dc,d so that:

  1. A* acts as BFS

    f(n)=depth(n)f(n) = depth(n)

    Choosing function with the lowest depth in the tree first is the equivalent of BFS.

  1. A* acts as DFS

    f(n)=depth(n)f(n) = -depth(n)

    Choosing function with the highest depth in the tree first is the equivalent of DFS.

  1. A* acts as UCS

    f(n)=pathCost(n)f(n) = pathCost(n)

    Not using any heuristcs at all.