Benchmarking Vector Databases on Code Embeddings

Vikram N. Subramanian
University of Waterloo

Abstract

Vector databases are experiencing a major surge in interest
thanks to their popularity in Large Language Model (LLM)
based applications. However existing performance compar-
isons of vector databases are limited. This project contributes
the first (to the best of our knowledge) large high dimensional
embeddings data set for benchmarking. It is also the first data
set generated from source code. Using our dataset we ran
benchmarks on four popular vector databases: ChromaDB,
MilvusDB, Weavite and Redis.

1 Introduction

Existing LLM applications use Retrieval Augmented Gen-
eration (RAG) to improve their performance. RAG involves
providing to an LLM both a prompt and any semantically
relevant documents. Determining whether a document is rele-
vant is done by transforming both the prompt and any relevant
documents into vector embeddings (embeddings) and com-
paring their similarity. Each embedding is an array of floats
and is generated by feeding text, such as a prompt into an
embeddings model.

Generally, the embeddings model will create embeddings
such that if two documents are semantically similar, their cor-
responding embeddings will also be similar. Figure 1 shows
an example of the query and retrieval process. For many LLM
based applications, enormous amounts of embeddings must
be stored and retrieval must be fast. Vector databases satisfy
both of these requirements by offering efficient storage and
retrieval of relevant embeddings [5].

The main contributions of this paper are:

1. A very large high-dimension (1024-dimension) data set

2. First code specific dataset to benchmark vector databases

3. Some preliminary benchmarking of 4 popular vector
databases using above mentioned data set.

We didn’t test established databases like Postgres because,
as of December 2023, despite improvements like pgvector

Raymond Chang
University of Waterloo

Yahya Jabary
University of Waterloo

| Search I
N
uesti

Embedding Model

Relovant cont

Question + Context

Gen Al Model

Reliable Answer

4
. S

Figure 1: Retrieval Augmented Generation [5]

and pg_embedding, they lag in both performance and user
convenience [3]. They struggle to meet the demands of the
fast-evolving Al landscape.

1.1 Why are mutations necessary?

Recall goes down as the load goes up in a vector database.
This is because of the algorithm used to search in a vector
database. This means, evaluating the accuracy of the results
returned is an important metric in vector databases. To do this,
we need access to the absolute truth of which entry is closest
(in cosine similarity) to another entry in the dataset. The only
way to do this is the manually compute the cosine similarity
of every entry with every other entry, an O(n?) operation. With
an embedding size of 1024 floats per vector, this results in
around 3 x 10'® floating point operations, an extremely large
amount. We estimate that this would take 100 Nvidia H100
GPUs an entire month to compute.

We solve this problem by using a novel application of
mutations. We create mutated versions of snippets such that
the snippets closest in cosine similarity to a code block are its
mutations. See the mutation section for more information.

1.2 Determining similarity

A key requirement of vector databases is retrieving relevant
embeddings given some query embedding ¢. This is done by
measuring the similarity of ¢ and the embeddings stored in
the database. Several methods exist to determine similarity,
however the one used in our benchmarks is cosine similarity.
Equation 1 listed below describes how to calculate the cosine
similarity of two vectors a and b.

a-b

1
a8 M

CosineSimilarity =

1.3 Indexing

One algorithm used to create indexes in vector databases
is Hierarchical Navigable Small Worlds (HNSW). In this
algorithm, embeddings are represented as several layers of a
proximity graph as shown in Figure 2. A search begins at the
topmost layer at a designated entry node. The neighbors of the
node at the current layer are then compared against the query
vector and the node with the highest similarity is chosen as
the next node. Eventually, the closest node in the current layer
to the query vector is found (local minimum). The search
moves down to the next layer and the search resumes. This
process continues until the closest node to the query vector is
found in the bottom layer [4].

The layers are constructed starting from the bottom layer.
A probability function determines which layer each node be-
longs to. Most of the nodes will belong to the lowest layer
and each successive layer will gradually have less nodes. Var-
ious parameters may be tuned during the construction pro-
cess which can provide a trade off between recall and search
time [4].

2 Design and Implementation

2.1 Generating a corpus of code documents

Our goal was to scrape at least half a million code files off the
internet. As many open source projects are hosted on GitHub,
we chose to source our corpus from there. Our first attempt to
scrape GitHub involved using their API. However, the issue
with this approach is the aggressive rate limiting imposed by
GitHub. The rate limits are as follows:

* Anonymous client rate limit: 60 requests/h or over
8,333h in total

* Authenticated client rate limit: 5,000 requests/h or over
100h in total

* Enterprise client rate limit: 15,000 requests/h or over
33h in total

We tried different ways to get around Github’s rate limits,
but none worked:

entry point

nearest meig[/\bw
query vector

Figure 2: An example of an HNSW index. Each circle repre-
sents an embedding. Circles that are directly on top of each
other represent the same embedding. Each plane in the dia-
gram is a layer [4].

* Bandwidth Throttling: Set request limits and periods.

* Rotating IPs: Tried to exploit XFF vulnerability. Used
rotating proxies from popular pools like the AWS API
Gateway and BurpSuite [Protate.

* Fake Resource Paths: Used variations in resource paths
like %00, %09, %0a, %0c, %20, etc., different end-
point naming formats and fake query parameters.

 Token rotation and ETag overwriting: Built requests on
top of eachother.

We then resorted to web scraping and fortunately two alter-
native paths were found:

1. We used the system size: > 100000 query to access
the largest repositories on the GitHub “search” page.
This was done manually, and around 500 links were
collected before we concluded this approach was im-
practical.

2. We scraped by scrolling on different “topics” pages and
clicking the “load more. ..” button. Each of these pages
yielded 2000 repository links. This was equivalent to
scraping 15 repository links per second.

Through the language “topics” page we were able to scrape
around 5000 repository links. Next we cloned all of them,
extracted relevant files and chunked them into blocks of 5000
files to commit to our public repository without being billed
for GitHub-LFS. This process allowed for the successful
scraping of over half a million files of code.

2.2 Mutating documents to create clusters

Next, we wanted to generate clusters of data through a pro-
cess called mutation. The goal of mutations was to create
semantically similar code blocks such that their correspond-
ing embeddings will be similar.

The mutation process involves inserting blocks of dead
code into each function. We generate five mutated versions
for each function, with each successive mutation increasing in
complexity. This can be achieved by mutating each function
and inserting some dead code, thus preserving the semantics.
For each function, we generate five mutated versions such that
each successive mutant is more complex than the previous.
Mutations have to be similar but not too similar to ensure
recall drops.

Here’s an example of a mutation:

1 # Original

2 def foo():

3

4

5 # Mutated

6 def foo():

7 if False:
8 i=0
9

We were initially unsure about how complicated these mu-
tations would have to be, so we built a fairly general solution.
If the mutations were not complex enough, the database would
not be challenged in identifying similar code snippets and our
measurements would not be helpful. This is because a vector
database’s recall performance goes down as load increases
(See HNSW section for more details). If the mutations were
too strong, we would produce mutations with cosine similar-
ities less than other code blocks and therefore would make
our fundamental assumption wrong- the snippets closest in
cosine similarity to a code block are its mutations.

We start by parsing each function and generating an Ab-
stract Syntax Tree (AST). We then traverse the AST and upon
finding a function, insert some dead code right at the begin-
ning. We then dump these mutations and their originals into
JSON files to be parsed later.

One of the measurements is how recall is affected by load
on the database. We wanted to make sure that recall would
actually decrease, so we had to make sure the mutations actu-
ally affected the cosine similarity. We did this by converting
some mutations into embeddings and measuring them.

We first had to determine a baseline, which was the largest
difference in similarity we would encounter. We did this by
comparing the similarity of the two largest functions, which
are likely to be the most different semantically, and got a
cosine similarity of 0.68. We then checked the similarity of
the smallest function with its mutations as well as the largest
function and found that their similarity does actually differ.
The smallest function had a similarity range of 0.82 to 0.92
with its mutations, while the largest function had a range of
0.85 t0 0.91.

This analysis confirms that our mutation process is effec-
tive in generating semantically similar but distinct functions,
which is crucial for our goal of data clustering.

Read speeds

Figure 3: Read speeds

2.3 Generating embeddings from our muta-
tions

We use the GTE-Large [2] embedding model to produce muta-
tions. As of writing this paper, it is one of the top-performing
embedding models in semantic search datasets/challenges
such as the MTEB dataset [1]. It produces embedding of
size 1024. We run this model on an Nvidia A6000 GPU. All
the mutations and their code snippets took approximately 13
hours to be computed.

3 Evaluation

We benchmarked four databases: ChromaDB, MilvusDB,
Weavite and Redis with our generated embeddings. We evalu-
ated them on three different metrics: read speeds, write speeds
and recall vs load.

3.1 Read speeds

Figure 3 shows the results of our read speed benchmarks. We
noticed a clear distinction between the write speeds of the
databases as the number of threads increases. Redis maintains
a steady performance, ChromaDB shows minor fluctuations
but remains relatively stable, MilvusDB’s performance de-
grades gradually, and Weavite degrades significantly. Redis
and ChromaDB are "on-memory" databases. This may ex-
plain their better scalability.

3.2 Write speeds

Figure 4 shows that write operations scale better for Chro-
maDB and Redis than for MilvusDB and Weavite. This is
similar to read operations and the reasons for the observed
behaviour should also be the same. We spin up a fixed number
of threads. Each thread is assigned a fixed number of entries
to write (100 in this case). And the threads are run and the
start and end times are measured. We divide that number by
100 to get the times presented. Each of these writes were
performed multiple times and averaged out to remove noise
from our readings.

Write Speeds

Figure 4: Write speeds

Recall

Figure 5: Recall vs Load

An interesting observation is that the write operations are
noticeably faster than read operations. This is because data is
"indexed" or structured in a queriable way at a later "indexing"
stage. The write operation simply saves this data to memory
without the need to go through an index.

3.3 Recall vs Load

As seen in Figure 5, Redis and ChromaDB seem to have
higher recall when under heavy load (which means they are
good at retrieving relevant items) than Weavite and MilvusDB.
These observed behaviours could be due to better design
and/or more efficient indexing. Also, the burstiness of the
reads could affect recall. As the two databases have much
faster read performance, they perhaps encounter less overall
stress.

The big trade-off with ChromaDB is that it’s purely an
in-memory database. It offers no persistence. This severely
limits it in its use cases. Redis does offer persistence but the
operation of writing to disk costs time and is something to
take into consideration while evaluating performance.

4 Threats to Validity

When the load on a database is very low, the recall is still
less than 1. This means the data set isn’t perfect. For exam-
ple, given a code block x and its mutation x’, there may exist
another code block y that is closer in similarity to x than x’
is.Databases under minimal load produced a recall of 0.99

with a perfect dataset. The same DB produced a recall of
0.94 with our dataset. This quantifies the error in our dataset.
Results measured should have this fixed offset added to un-
derstand true database performance

5 Conclusion

In this project, we created a novel large high-dimensional
data set for benchmarking vector databases. It is also the
first code-specific data set for benchmarking vector databases.
Determining the nearest neighbors of two entries in the dataset
is expensive computationally. By generating semantically
equivalent mutations of existing source code, we avoid this
issue. Our benchmarks showed that Redis had the lowest
fluctuations in read performance with ChromaDB coming
in second. For write operations ChromaDB and Redis scale
better for than MilvusDB and Weavite. We also found that
Redis and ChromaDB provide higher recall when under heavy
load.

Our source code and scraped source code/mutations
can be found here: https://github.com/sueszli/
vector-database-benchmark.

The raw data for the benchmark is stored separately here:
https://uofwaterloo-my.sharepoint.com/personal/
vnsubram_uwaterloo_ca/_layouts/15/onedrive.
aspx?id=%2Fpersonal%2Fvnsubram_uwaterloo_ca%
2FDocument s$2FVDB-Code-benchmarking-dataseté&
ga=1

References

[1] Hugging Face. Mteb leaderboard. https:
//huggingface.co/spaces/mteb/leaderboard,
2023. Accessed: yyyy-mm-dd.

[2] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. Towards general text
embeddings with multi-stage contrastive learning, 2023.

[3] Jimmy Lin, Ronak Pradeep, Tommaso Teofili, and Jasper
Xian. Vector search with openai embeddings: Lucene is
all you need, 2023.

[4] Pinecone. Hierarchical Navigable Small Worlds (HNSW)
| Pinecone.

[5] Zachary Proser. Retrieval Augmented Generation (RAG):
The Solution to GenAl Hallucinations | Pinecone.

https://github.com/sueszli/vector-database-benchmark
https://github.com/sueszli/vector-database-benchmark
https://uofwaterloo-my.sharepoint.com/personal/vnsubram_uwaterloo_ca/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fvnsubram_uwaterloo_ca%2FDocuments%2FVDB-Code-benchmarking-dataset&ga=1
https://uofwaterloo-my.sharepoint.com/personal/vnsubram_uwaterloo_ca/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fvnsubram_uwaterloo_ca%2FDocuments%2FVDB-Code-benchmarking-dataset&ga=1
https://uofwaterloo-my.sharepoint.com/personal/vnsubram_uwaterloo_ca/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fvnsubram_uwaterloo_ca%2FDocuments%2FVDB-Code-benchmarking-dataset&ga=1
https://uofwaterloo-my.sharepoint.com/personal/vnsubram_uwaterloo_ca/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fvnsubram_uwaterloo_ca%2FDocuments%2FVDB-Code-benchmarking-dataset&ga=1
https://uofwaterloo-my.sharepoint.com/personal/vnsubram_uwaterloo_ca/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fvnsubram_uwaterloo_ca%2FDocuments%2FVDB-Code-benchmarking-dataset&ga=1
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

	Introduction
	Why are mutations necessary?
	Determining similarity
	Indexing

	Design and Implementation
	Generating a corpus of code documents
	Mutating documents to create clusters
	Generating embeddings from our mutations

	Evaluation
	Read speeds
	Write speeds
	Recall vs Load

	Threats to Validity
	Conclusion

